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Abstract
In this work we study electron transport through quantum wires coupled to
a quantum dot Aharonov–Bohm ring by using a noninteracting Anderson
tunnelling Hamiltonian. In the case of an asymmetric coupling and three dots
within the Aharonov–Bohm ring we have observed the appearance of Fano-like
resonances in the conductance. We have investigated the asymmetry and the
position of the conductance resonances and found closed expressions. We have
also observed Aharonov–Bohm oscillations. Finally the local density of states
as well as the probability amplitude phases have been studied.

1. Introduction

Since Fano proposed in 1961 a theoretical framework for explaining the shape of some
He resonances observed in electron scattering experiments [1], a large variety of systems [2–5]
have shown what seems to be a ubiquitous phenomenon that fits into the framework of the Fano
effect. Since then, both experimental [6, 7] and theoretical works [8–10] have been devoted
to studying this effect. In particularly, Aharonov–Bohm interferometers with embedded
quantum dots have received notable attention in the last few years. These works considered the
asymmetric Fano lineshapes observed in the conductance of these mesoscopic systems [9–11],
as well as quantum coherence phenomena such as the Kondo effect [12, 13]. The observed
Fano lineshapes arise from the quantum mechanical interference between the quantum dot
resonant state and the continuum [1]. Also, as regards these quantum dot Aharonov–Bohm
interferometers, a number of papers have been devoted to analysing phase and coherence
properties [6, 8, 7, 14].

In this paper we study electron transport through quantum wires coupled to a quantum
dot Aharonov–Bohm ring. The ring is formed by N quantum dots which are connected to
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Figure 1. A schematic diagram of the quantum dot Aharonov–Bohm ring. See the text for further
details.

each other by a coupling constant td. Besides this, the dots belonging to the ring are coupled
to two quantum wires via a coupling constant tc. The wires act as contacts so it is possible to
establish a current through the ring. In addition, a magnetic field is applied and a magnetic
flux � is then established through the ring.

This paper is organized as follows. First, in section 2 we briefly describe the formalism
used to study this system. We present closed expressions for the conductance when a magnetic
field is applied, and find Aharonov–Bohm oscillations. In section 3 we particularize to the
simplest case N = 3 and find that an asymmetry of the ring coupling constant induces
the appearance of Fano-like resonances. We give closed expressions for the resonant and
antiresonant energies of the Fano-like conductance resonances appearing and study how their
position and lineshape depend on the different system parameters. For an applied magnetic
field, as in the symmetric case, we observe Aharonov–Bohm conductance oscillations. In
section 4 we investigate the local density of states at the dots belonging to the Aharonov–
Bohm ring, and the phase jumps taking place at the antiresonant energy. Finally, section 5
concludes the paper with a summary of results and a discussion on their relevance in describing
actual experiments.

2. Model

We model the system described previously by using a noninteracting Anderson tunnelling
Hamiltonian that can be written as H = HW + HN

R + HN
WR, where

HW = ε0

∑
j

c†
j c j + tw

∑
j

(c†
j c j+1 + c†

j+1c j),

HN
R = ε

N∑
i=1

d†
i di + td

N∑
i=1

(eiφd†
i di+1 + e−iφd†

i+1di),

HN
WR = tc

N∑
i=1

(d†
i c1 + c†

1di + d†
i c−1 + c†

−1di),

(1)

where ε is the site energy at the quantum dots. Here φ is the Peierls phase: φ = 2π�/N�0,
where �0 = h/e is the flux quantum. The operators c†

j , d†
i (c j , di ) create (annihilate) an

electron at sites j (wires) and i (ring), respectively. Hereafter we will assume a coupling
constant equal to unity (tw = 1) and zero site energy in the wires (ε0 = 0) without loss of
generality. A schematic view of the device is depicted in figure 1.
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The stationary states of the entire Hamiltonian H can be written as

|ψ〉 =
∑

j

a j | j〉 +
∑

i

bi |i〉, (2)

where the coefficient a j (bi ) is the probability amplitude for finding the electron at site j of
the wires (i of the ring). From (1) and (2), the equations for the Wannier amplitudes a j and bi

on the wires and the ring respectively can be written in the following way:

Ea j = a j−1 + a j+1,

Ea−1 = a−2 + tc
N∑

i=1

bi ,

Ea1 = a2 + tc
N∑

i=1

bi ,

Ebi = td(eiφbi+1 + e−iφbi−1) + εbi + tc(a1 + a−1),

(3)

with i = 1, 2, . . . , N and j = ±2,±3, . . .. In what follows we will restrict ourselves to the
study of the zero-temperature conductance. For a single electron channel we have

G = 2e2

h
τ, (4)

where τ is the transmission coefficient. In order to calculate τ we assume that the electrons are
described by a plane wave incident from, say, the left wire ( j < −1) with unity amplitude and
a reflected wave with reflection amplitude r . At the right wire ( j > 1) electrons are described
by a transmission amplitude t . Taking this to be the solution of equation (3) at the wires, the
transmission coefficient can be written as τ = |t|2. Introducing the following notation:

�N ≡ 2Nt2
c , � ≡ 2td cosφ, (5)

and performing some lengthy algebra we arrive at the expression for the zero-temperature
electron conductance:

G(N,�) = (2e2/h)�2
N (1 − E2/4)

�2
N + (ε − E +�)2 + E�N (ε − E +�)

. (6)

From this expression we conclude that the conductance presents resonant energies given by

E↑ = ε +�

1 − �N/2
, E↓ = 4

1 − �N/2

ε +�
. (7)

These two energies cannot lie simultaneously within the wire band since they satisfy the
relation 4 = E↑ E↓. From (6) and (7) it can be observed that the resonant energies depend on
the different system parameters. The width depends on the coupling between the wires and
the ring tc and the system size N . It is clear that the resonant peak broadens as the system size
increases.

Aharonov–Bohm oscillations can be observed in this system as the conductance depends
on the oscillatory term �, due to the presence of the ring-enclosed magnetic flux�. Figure 2
shows the conductance as a function of the magnetic flux� when the Fermi energy is located
at the band centre E = ε = 0, with tc = 0.1 and td = 0.5. For this energy it can be seen
from expression (7) that the conductance reaches its maximum (2e2/h) when the magnetic
flux satisfies �/N�0 = (2n + 1)/4, n = 0, 1, 2, . . ..
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Figure 2. The conductance as a function of the magnetic flux. Aharonov–Bohm oscillations can
be observed.

3. Fano-like resonances

Now we particularize our results to the case with only three quantum dots in the ring, N = 3.
Besides this, we consider a single defect (asymmetric Aharonov–Bohm ring) in the ring, which
consists in a coupling constant between two of the three dots differing from the two others by
a factor α: t̄d = αtd. In our present calculations we will assume that ε = 0 for all the dots
belonging to the ring.

As we did in the general case, it is possible to calculate the conductance arriving at the
following expression:

G(N = 3,�) = (2e2/h)�(E,�)2(1 − E2/4)

�(E,�)2 +�(E,�)2 + E�(E,�)�(E,�)
. (8)

The form of this equation resembles that of (6) but now, due to the presence of the defect t̄d in
the asymmetric ring, the quantities � and � are much more complex and involve both E and
�. Here

�(E,�) = 2t2
c γ (E,�)

2,

with

γ (E,�) = 3E2 + 2(2 + α)td E cosφ + t2
d [4(1 + 2α) cos2 φ − (α + 2)2],

and

�(E,�) = E3 − (2 + α2)Et2
d + 2αt3

d cosφ[3 − 4 cos2 φ].

It is possible to find a set of system parameters for which the conductance presents an
antiresonance. This will happen for an energy satisfying γ (E,�) = 0. The conductance will
also show a resonance when the condition Eγ (E, φ)t2

c = �(E,�) is fulfilled. Particularizing
to the case in which�/3�0 = 1/4, that is cosφ = 0, we obtain

Er = ±td

√
2 + α2 − tc(2 + α)2

1 − 3tc
, Er = 0, (9a)
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Figure 3. The conductance as a function of the Fermi energy in a three-quantum-dot Aharonov–
Bohm ring.

and

Ea = ±td
2 + α√

3
, (9b)

for the resonant and antiresonant energies respectively. From these equations it is clear that the
energy of the resonances changes with the asymmetry parameter as E ∼ α. This behaviour
seems to be rather general despite the value of the magnetic flux, except for some pathological
cases, such as tc = 1 and �/3�0 = 1/4; then Ea ∼ α and Er ∼ √

α. In figure 3 we plot
the conductance as a function of the Fermi level in units of the coupling constant within the
wires for td = 1/2, α = 2 and tc = 0.2. One can see the appearance of two symmetrically
located Fano-like resonances with a characteristic asymmetric lineshape at the energies given
by equation (9a). As previously stated, Fano resonances arise whenever a quantum interference
between a resonant state and a continuum takes place [1]. In the present case the Fano-like
lineshapes shown in figure 3 can be understood as an interference between the different paths
(a consequence of the asymmetry α in the coupling constant connecting the dots in the ring)
that connect the left and the right wires of the system. Note the occurrence of a resonant energy
at E = 0 that is reminiscent of the symmetric case (α = 1).

The Fano-like resonances found appear not only for nonzero magnetic flux. In a general
case the expressions for the resonant and antiresonant energies are more complicated, but
it is still possible to find closed expressions for these quantities. In figure 4 we represent
the conductance versus the Fermi energy for zero magnetic flux. The system parameters
are �/3�0 = 0, α = 3/2, td = 1/2, and (a) tc = 0.2, (b) tc = 0.3, (c) tc = 0.5. The
conductance curve is no longer symmetric but still shows a Fano-like resonance. The energy
of the resonance changes slightly with the coupling constant tc, but it is worth noting that this
parameter controls the asymmetry of the lineshape: the larger tc, the larger the asymmetry,
as can be observed in figure 4. It is also remarkable that the present set-up allows tunable
Fano-like resonances since both the position and the lineshape can be modified by a suitable
selection of the system parameters. Another example of a tunable Fano system has been
recently studied experimentally [7, 15].

Figure 5 shows the conductance as a function of the magnetic flux (in units of the flux
quantum) when the Fermi energy is located at the centre of the band (E = ε = 0), of a
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Figure 4. The conductance as a function of the Fermi energy in the three-quantum-dot Aharonov–
Bohm ring showing the lineshape dependence on the coupling tc.
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Figure 5. The conductance as a function of the magnetic flux in the three-quantum-dot Aharonov–
Bohm ring.

three-quantum-dot Aharonov–Bohm ring. In the figure, tc = 0.2, td = 1/2 and α = 2.
From equation (8) and figure 5 it is clear that the asymmetry α does not affect the presence of
conductance oscillations due to the oscillatory term cosφ. These oscillations present several
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Figure 6. The local density of states as a function of the Fermi energy for each quantum dot
belonging to the ring. We show schematically the electronic open paths for the energies marked
with an arrow. The dashed line indicates the antiresonant energy.

maxima, six for each period, two of them for values of the flux given by�/3�0 = (2n + 1)/4,
n = 0, 1, 2, . . ., which are reminiscent of those in the symmetric (α = 1) case. The other
maxima are associated with the already mentioned symmetric Fano-like resonances.

4. Local density of states and phase jumps

It is not difficult to find from (3) the local density of states at each quantum dot belonging to
the ring, which will allow us to better understand the observed Fano-like resonances. We study
the case with vanishing magnetic flux (� = 0). After some algebra we arrive at the following
expressions:

|b1|2 = |b3|2 = (4 − E2)(E + td)2t2
c

δ2 + β2
,

|b2|2 = (4 − E2)[E − (α − 2)td]2t2
c

δ2 + β2
,

(10a)

where

δ = E2 − αtd E − 2t2
d , β = (6E − 2αtd + 8)t2

c . (10b)

In figure 6 we plot the local density of states using the same parameters as in figure 4(c) for the
three quantum dots belonging to the ring. It can be seen that the three curves present a resonance
for an energy equal to the conductance resonant energy. Thus the dots are maximally charged
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Figure 7. (a) The probability amplitude phase, and (b) the conductance as a function of the Fermi
energy. The dashed line indicates the antiresonant energy.

at this resonant energy. One might naively expect the dots to be empty at the conductance
antiresonant energy. However, the dots are charged. This supports the idea that the origin of
this antiresonance is the interference between the different paths in the ring. If one calculates
the antiresonant energy for the present case, which turns out to be Ea = td(α − 4)/4, it can
be found that |b2|2/|b1|2 = 4 for this energy, which is highly surprising since it becomes
independent of any system parameter. It can be observed in figure 6 that there exist some
energies that do not correspond to the antiresonant energy for which the local density of states
becomes zero, namely |b1|2 = |b3|2 = 0 or |b2|2 = 0. At these energies

E1 = E3 = −td, E2 = (α − 2)td, (11)

marked in the figure with an arrow, some of the interfering paths are closed and the electron
transport takes place across one or two of the three dots, as is schematically shown on the
right-hand side of the figure.

To end our study of the three-quantum-dot Aharonov–Bohm ring we have calculated the
phase θ j for the probability amplitudes, b j = |b j | exp iθ j ( j = 1, 2, 3):

θ j ≡ θ = arctan

{
1

2
√

1 − E2/4

[
E(β − Eδ/2)− 2(1 − E2/4)δ

β

]}
. (12)

In figure 7 we show the phase θ for a system with the same parameters as in figure 6. We observe
the existence of a phase jump �θ = π at an energy given by the zeros of the denominator in
equation (12), β = 0; that is, EJ = td(α− 4)/3. This energy corresponds to the antiresonance
on the conductance curve. Similarπ phase jumps in the transmission amplitudes of Aharonov–
Bohm rings with a coupled quantum dot exhibiting the Fano effect have been reported both
experimentally [6, 16] and theoretically [8, 14, 17, 18]. The origin of these phase jumps in
these systems has been attributed to a coupling between the Aharonov–Bohm ring and the
quantum dot in these interferometers.
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5. Summary

In the present work we have studied electron transport across a quantum dot Aharonov–Bohm
ring attached to a pair of quantum dot wires. We have studied the symmetric N case (all
the coupling constants connecting dots within the ring are the same), finding that this system
exhibits Aharonov–Bohm oscillations in the conductance. We have also studied the asymmetric
case for N = 3 in which one of the coupling constants differs from the others by a factorα. We
have observed in this case the appearance of Fano-like resonances. The system can be tuned
by varying the system parameters, since both the position and the asymmetry of the resonances
can be controlled. In particular, we have found that the asymmetry of the Fano-like resonances
is controlled by the constant of coupling, tc, between the wires and the ring. It has been shown
that the asymmetric case still presents Aharonov–Bohm oscillations. We have studied the
local density of states on the dots belonging to the ring. The local densities of states found
at the dots within the ring show that the observed Fano-like resonances are a consequence of
an interference between the different paths across the ring. Finally, we have found a π phase
jump in the probability amplitudes similar to those reported in the literature for other quantum
dot Aharonov–Bohm interferometers exhibiting the Fano effect.

We expect the above picture to remain valid even if the electron–electron interaction is
taken into account. In fact, in embedded quantum dots arrays, the main effect of the electron–
electron interaction is to shift and split the resonance positions [19, 20]. This effect arises
because the on-site Coulomb repulsion energy U introduces a renormalization of the site
energies. From the analogy with embedded quantum dot arrays, we expect that, depending
on the relation between the interdot coupling and the on-site Coulomb interaction, different
regimes might arise. For U small, the resonances and antiresonances would split into two
distinct minibands separated by the on-site Coulomb energy, while for U large, the resonances
would occur in pairs.
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